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An expansion approach in rubber elasticity
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Abstract
We introduce an expansion approach to obtain the elastic free energy density in rubber elasticity. This new approach presents fast conver-
gence for whole range of deformation. We apply this method to the freely jointed model and get an analytical form for the free elastic energy
density in terms of the strain invariants. We use this expression to fit experimental data for PMDS network.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The most important physical characteristic of the rubber is
the high degree of deformability from the action of stress. The
typical behavior of the stressestrain curve presents a non-
linear relation, in which Hooke’s law is applied only in region
of small deformation. This aspect can be explained using the
classical rubber elasticity theory [1e3] based on the entropic
distribution of two connected crosslinks. In this framework,
the elastic resorting force of the polymer network results
from the entropy change in a set of independent chains. The
free energy per strand is FsðRÞ ¼ �kBT ln PðRÞ, where
P(R) is the end-to-end probability distribution, kB is the Boltz-
mann constant and T is the temperature. In this case, when the
end-to-end distance of a polymeric chain is lengthened, its
configurational freedom is lowered, the entropy decreases
and the free energy increases.

In this context, the network elastic free energy density to
deformed body is obtained by averaging the free energy per
strand over their initial distribution (quenched average) and
multiplying by the total number of network strand per unit
of volume, ns,
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F¼ nshFsðRÞi0¼ ns

Z
FsðRÞPðR0Þd3R0: ð1:1Þ
Here we consider the assumptions of perfect rubber elasticity,
i.e., the assumptions of incompressibility in bulk, isotropy in
the undeformed state, and reversible stressestrain relations.
When we consider some kinds of materials, like c* gels [4],
where the multi-chain effects such as screening or entangle-
ments may not come into play, the application of the classical
rubber theory seems to be justified. On the other hand, when
compared with a more complete scenario, where only tube
models taking entanglement and finite extensibility contribu-
tions into account are able to describe the stressestrain behav-
ior with physically reasonable parameters [5], the approach
based on Eq. (1.1) does not lead to a general treatment but
it may be useful as a source of motivation for some advances.
In this case, constraints like entanglement or junction fluctua-
tions, which are essential for a good agreement with experi-
mental data, may be incorporated by the addition of
phenomenological terms such as the MooneyeRivlin one [1].

For non-trivial distribution the above average can be
cumbersome. For example, by considering a chain composed
by N freely jointed monomers of length b, with all directions
having the same probability, P(R) is given by [6]

mailto:eklenzi@dfi.uem.br
http://www.elsevier.com/locate/polymer


1969P.F. Bienzobaz et al. / Polymer 49 (2008) 1968e1971
PðRÞ ¼ 1

ð2pÞ3
Z

ei k$R

�
sinðkbÞ

kb

�N

d3 k
!
; ð1:2Þ

which depends only on the modulus of the end-to-end vector R
and can be obtained in a close form only in terms of a series.
The simplest approximation for this freely jointed model is
given by the Gaussian end-to-end approximation,
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where L ¼ Nb is the chain arc length. However, it is well
known that Gaussian approximation is valid only for N suffi-
ciently large and end-to-end distances R small compared to
the maximum chain length Nb. Natural rubber values of N
(for the chains in a normal cross-linked network) are likely
to lie in the range 50e100 and the use of the Gaussian approx-
imation may not be sufficiently exact. Another weakness of
the Gaussian distribution is that it predicts zero probability
only in the limit R/N, which is directly related to Hooke’s
law for unlimited deformation.

Unfortunately the attempt to replace the Gaussian statistical
theory by a more exact treatment involves a considerable
sacrifice of both simplicity and generality. For instance, an
explicit way to take the finite length effect into account is
given by the inverse Langevin approximation [7]

PLðRÞfexp

2
4�N

ZR=Nb

0

LðxÞdx

3
5; ð1:4Þ

where L(x) is the inverse Langevin function. However, in this
case and for other more realistic distribution, the quenched
average, Eq. (1.1), becomes very difficult to be performed in
an exact way. The usual approach employed is to expand
Fs(R) in a Taylor series for R=ðNbÞ < 1 and to perform the
average term-by-term [8,9]. One inconvenience of the series
expansion for R=ðNbÞ < 1 is that it does not present good
accuracy for large deformation (slowly convergence for
R=ðNbÞ > 1=2), so that in this case, it is necessary to take
a high number of terms into account with increasing complex-
ity [1]. This difficulty principally arises by the necessity of
calculation of hRiRj.Rmi, which is a hard task depending
on the form of the distribution, what in general is possible
only by numerical calculation.

In order to circumvent this difficulty, in the next section, we
consider an expansion approach which avoids the previous
problem. In this context, the main advances of our approach
are: (i) a mathematically convenient way to solve the junction
affine model of rubber elasticity for arbitrary chain end-to-end
distance distributions, (ii) relevant expressions for the elastic
free energy in invariant form, and (iii) fast convergence
expression for the whole range of deformation when compared
with the usual Taylor expansion. In Section 3, we apply the
approach developed in Section 2 to obtain the analytical free
energy density for the freely jointed model. In the last section,
we present our conclusions and final remarks.
2. Expansion approach

Firstly note that considering the affine deformation R ¼
lR0, with the strain matrix l being written in terms of the
principal axis, l ¼ Diagðl1; l2; l3Þ, we can write, in spherical
coordinates,

R2 ¼ l2ðq;4ÞR2
0; ð2:1Þ

where

l2ðq;4Þ ¼ l2
1 cos2ð4Þsin2ðqÞ þ l2

2sin2ðqÞsin2ð4Þ þ l2
3cos2ðqÞ:

ð2:2Þ
In this way, considering that Fs depends on the modulus of

the end-to-end vector R, the elastic free energy density Eq.
(1.1) becomes
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Now, for this F, we can make a series expansion around
hl2i and hR2

0i leading to
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with the coefficients Cij given by
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and the mean values given by
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By construction, the mean values hðR2
0 � hR2

0iÞi and
hðl2 � hl2iÞi vanish. Note that the angular integration can
be performed independently of the distribution leading, for
example, toD�
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with I1, I2 and I3 being the three strain invariants, I1 ¼
l2

1 þ l2
2 þ l2

3, I2 ¼ ðl1l2Þ2 þ ðl2l3Þ2 þ ðl3l1Þ2 and I3 ¼
ðl1l2l3Þ2. On the other hand, the coefficients Cij and the radial
integration depend on the form of the end-to-end distribution.
For homogeneous networks’ approximation, where every
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network chain has the same initial end-to-end distance,
ffiffiffiffi
N
p

b,
the above expansion reduces to the Puso approach [10].

As pointed in Section 1, to incorporate finite length effects,
the Taylor series for R=ðNbÞ < 1, which presents slow conver-
gence for R=ðNbÞ > 1=2, is usually employed [8,9]. On the
other hand, our approach circumvents this difficulty by intro-
ducing an expansion which presents fast convergence for the
whole range of deformation. Moreover, we observe that in
the non-Gaussian region, the treatment in a rigorous manner
presents enormous mathematical difficulties. These difficulties
can be reduced by the introduction of assumptions which are
not strictly valid such as the affine approximation.

3. Application

Let us now show that the above approach leads to rapidly
convergent series, so that we can consider only few terms
for the integer range of deformation. To do this, let us take
a generalization of the Fixman and Alben distribution intro-
duced by Erman and Mark [11],

PðRÞ ¼ P0 exp

�
� 3R2

2Nb2
� c
�
R2
�x

�
; ð3:1Þ

where P0 is a normalization constant, c and x are adjustable
parameters. We chose this distribution because of its simplic-
ity and the facility of getting the exact numerical results. For
this end-to-end distribution, the elastic free energy per strand
to deformed body, in spherical coordinates, becomes

Fs

�
l2;R2

0

�
¼�kBT

�
3l2R2

0

2Nb2
þ c
�
l2R2

0

�x

�
: ð3:2Þ

We omitted a constant that arises from the normalization term
in Eq. (3.1). Fig. 1 shows the results of applying our expansion
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Fig. 1. Free elastic energy graphic for Erman and Mark’s model: exact result

(dot), the new expansion up to zero order (dotted line), second order (dashed

line) and third order (solid line). The parameters used were N¼ 50, b¼ 1,

c¼ 0.02, m ¼ nskBT ¼ 1, and x¼ 3.2. For other sets of parameters we got

similar results.
approach (uniaxial tension, l1 ¼ a and l2 ¼ l3 ¼ a�1=2) to
this distribution by taking zero (i,j¼ 0), second (i,j¼ 0,2)
and third (i,j¼ 0,2,3) order in the expansion and also the exact
result directly obtained from Eq. (2.3). As we can see, the third
order gives good agreement with the exact result for the inte-
ger range of deformation.

Now, let us consider the end-to-end distribution P(R)
obtained by considering a chain composed by N freely jointed
monomers of length b, with all directions having the same
probability. This distribution is given by Eq. (1.2). Although
the distribution is cumbersome, we can get all exact hR2pi
values by considering the relation

R2p
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where cðkÞ ¼ ½sinðkbÞ=ðkbÞ�N is the characteristic function. It
leads to
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These results can be used to get the hðR2
0 � hR2

0iÞ
ji values.

We can also obtain an approximate analytical expression
for the coefficients Cij by using the inverse Langevin approx-
imation together with the Pade representation [12],
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which gives
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Using the above chain free energy in Eq. (2.5), we obtain
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Numerical calculation for the above coefficients obtained by
using the Pade representation and the exact distribution shows
no significant difference.

The results obtained from Eqs. (2.8), (3.4) and (3.7) allow
us to get an analytical expression for the free energy density in
terms of two strain invariants, I1 and I2. For convenience, let us
write just the second order (i,j¼ 0,1,2),



1971P.F. Bienzobaz et al. / Polymer 49 (2008) 1968e1971
F¼m

(�
I1

6
�N ln

�
1� I1

3N

��
þ 2

45N

I2
1 � 3I2�
1� I1

3N

�2

þ ðN� 1Þ
27N2

I2
1�

1� I1

3N

�2
þ 4

135

ðN� 1Þ
N2

�
I2
1 � 3I2

��
1þ 2I1

3N

�
�
1� I1

3N

�4

þ.

)
; ð3:8Þ

where m ¼ nskBT. Notice that this expression presents a fast
convergence to large strain region. For instance, we can see
that the maximum limit extension is preserved even though
we consider just the zero order term in the expansion,
ln½1� I1=ð3NÞ�.

Despite the fact that it is necessary to consider several
modes of deformation to check a given theory, we use the sim-
ple extension just as an example of application of our
approach since it is the simplest one possible. Applying the
above result to the uniaxial tension, l1 ¼ a and l2 ¼ l3 ¼
a�1=2, the nominal stress (the force per unit unstrained area)
is directly obtained from [1]
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�
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Fig. 2 shows the fit of experimental data for unswollen
bimodal PDMS network [13] consisting of relatively long
chains and very short chains using the nominal stress from
the Gaussian theory and the corresponding adjustment with
the expression from Eq. (3.8), up to third order (i,j¼ 0,1,2,3).
As we can see, the Gaussian result is able to adjust the data
only in the small deformation region. On the other hand, the
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Fig. 2. Stress� strain data for unswollen bimodal PDMS network consisting

of relatively long chains and very short chains [13] (black dot) and the corre-

sponding adjustment with the new expansion, Eq. (3.9) (black line). The

parameters used were m¼ 0.28 and N¼ 11.54. The dashed line represents

the same data but adjusted with the Gaussian model with m¼ 0.37.
upturn to high extension is an effect of the finite extensibility
of the chains, and our results from Eq. (3.8) can incorporate
this behavior, leading to a satisfactory agreement with the
data for the whole range of deformation. Note that our model
does not incorporate other intermolecular effects like entangle-
ment or junction fluctuation. To take these effects into account,
at least in part, we may write the total elastic free energy density
as a sum of the elastic energy density from the quenched aver-
age and the elastic contribution that arises from the other
constrains [13]. For instance, it is well known, from the Moon-
eyeRivlin plot, that in the small and intermediary regions of
strain an additional deviation appears that is not connected to
the finite chain length effects [1]. We may, in a phenomenolog-
ical way, add the MooneyeRivlin term, C2I2, to the elastic free
energy, with the C2 coefficient being adjusted to fit the experi-
mental data in these regions.

4. Discussion

Here, we introduced a new expansion approach to obtain
the elastic free energy. This procedure presents a fast conver-
gence at strain approaching the limiting extension of the
network. Using a generalization of Fixman and Alben distribu-
tion, we showed the convergence of our approach. We also
applied the method to get an analytical expression for the elas-
tic free energy density to the freely jointed model. This model
is able to fit in a very satisfactory way the experimental data
for bimodal PDMS network over the whole range of extension.
These results indicate that this method may be useful in
the study of elastic deformation, specially concerning in the
case of large deformation or short polymer chain where the
Gaussian theory does not give satisfactory result.
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